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Abstract Adaptation and implementation of the Gener-
alized Shadow Hybrid Monte Carlo (GSHMC) method
for molecular simulation at constant pressure in the NPT
ensemble are discussed. The resulting method, termed NPT-
GSHMC, combines Andersen barostat with GSHMC to
enable molecular simulations in the environment natural
for biological applications, namely, at constant pressure
and constant temperature. Generalized Hybrid Monte Carlo
methods are designed to maintain constant temperature
and volume and extending their functionality to preserv-
ing pressure is not trivial. The theoretical formulation of
NPT-GSHMC was previously introduced. Our main con-
tribution is the implementation of this methodology in the
GROMACS molecular simulation package and the eval-
uation of properties of NPT-GSHMC, such as accuracy,
performance, effectiveness for real physical systems in com-
parison with well-established molecular simulation tech-
niques. Benchmarking tests are presented and the obtained
preliminary results are promising. For the first time, the
generalized hybrid Monte Carlo simulations at constant
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pressure are available within the popular open source molec-
ular dynamics software package.

Keywords Molecular dynamics · Constant pressure ·
Hybrid Monte Carlo · Andersen barostat · GROMACS

Introduction

The isobaric-isoenthalpic and isobaric-isothermal ensem-
bles (also called NPH and NPT ensembles respectively) are
the statistical ensembles where a number of particles (N), a
pressure (P) as well as either an enthalpy (H) or a tempera-
ture (T) are each fixed to particular values. These ensembles
play a very important role in chemistry and biology where
many processes are carried out at constant pressure. Math-
ematical techniques called barostats are developed to keep
constant pressure during a molecular simulation. In the case
of NPT ensembles, barostats are combined with thermostats
responsible for temperature maintenance.

Two main kinds of barostats are being mentioned here:
those, which introduce an extended variable for the equa-
tions of motion (extended ensemble coupling) and those
that use an external bath to perform the coupling (weak
coupling).

In the classical work by Andersen [1], a method with
an extended variable has been proposed. The system is
coupled to a fictitious “pressure bath” using an extended
Lagrangian, in which the volume acts as an additional
variable. The coupling mimics the action of an imaginary
external piston on a simulated system and the new vari-
able plays a role of the coordinate of a piston linked to an
external constant reference pressure. The resulting equa-
tions of motion produce trajectories which sample the NPH
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ensemble. The combination with one of the constant-
temperature methods (thermostats) allows NPT simulations.
The Parrinello-Rahman barostat [2], the Nosé-Hoover
barostat [3–5] and the Martyna-Tuckerman-Tobias-Klein
barostat, MTTK, [6] are all based on the Andersen barostat.

The most popular barostat that uses the external bathing
approach is the Berendsen barostat [7]. Instead of modifying
the Hamiltonian, as in the previous examples, it proposes
a weak coupling to an external bath using the principle of
least local perturbation consistent with the required global
coupling.

All listed barostat techniques (which in fact do not
cover the whole range of methods developed till now, but
which are the most relevant to the topic of this paper) are
commonly used in MD simulations and freely available
in popular MD software packages, such as GROMACS,
AMBER, LAMPPS, Desmond [8–12], etc. Usually sev-
eral barostats and thermostats are implemented in a modern
software suite to cover a range of needs. For example, in
GROMACS, the Berendsen, Parrinello-Rahman and MTTK
barostats as well as Berendsen, Nosé-Hoover and velocity
rescaling thermostats are currently available. Each barostat
or thermostat technique has its own limitations and it is a
user’s responsibility to choose the most appropriate method
or their combination for the problem of interest.

It is less common however to see the hybrid Monte Carlo
(HMC) method [13] implemented in the popular publicly
available molecular dynamics software codes, although the
method by construction maintains constant temperature and
may serve as a rigorous thermostat. The lack of attention
to this method is explained by its reputation of being inef-
fective for simulation of large complex dynamical systems.
Recently several efficient modified hybrid Monte Carlo
methods have been introduced [14–21], which proved to be
competitive and often superior to the well established simu-
lation techniques such as thermostated Molecular Dynamics
[5, 7, 22]. However, those methods are not well known and
mainly used only by their authors. To make the methods
available to a broader research community, recently we have
implemented the generalized shadow hybrid Monte Carlo
methods (GSHMC) [23] in the popular GROMACS package
[8, 9]. As its name suggests, with a proper choice of param-
eters and conditions, the method easily reduces to HMC,
generalized HMC, Langevin Monte Carlo or Metropolis
adjusted Langevin dynamics, that enriches the GROMACS
suite with a set of thermostats. What is missed here, how-
ever, is an ability of the listed techniques to maintain the
constant pressure during the simulation.

In this work we present the extension of GSHMC to the
simulation in the NPT ensemble, which we called NPT-
GSHMC, and its implementation in the GROMACS pack-
age. Our goal is to make available the efficient, flexible sim-
ulation methodology to a broad simulation community. The

paper is organised as follows. In section “NPT-GSHMC”
we introduce the method itself: GSHMC in the NPT ensem-
ble. Mathematical formulation is presented and implemen-
tation is discussed in details. The results of testing the
new implementation on two simple systems in compari-
son with MD in NPT and GSHMC in NVT are presented
in section “Results”. Conclusions are given in section
“Conclusions”.

NPT-GSHMC

Formulation

The NPT-GSHMC method has been already mathemati-
cally formulated in detail in [14]. The method combines
the generalized shadow hybrid Monte Carlo (GSHMC)
methodology [14] with the Andersen barostat [1]. In this
subsection, we briefly summarize the GSHMC algorithm
and specify the major steps that should be taken to extend it
to simulation at constant pressure.

The GSHMC method introduced in [14] is a general-
ized hybrid Monte Carlo (GHMC) [16, 17] which samples
with respect to a modified energy (also called a shadow
Hamiltonian). As a modification of GHMC, it consists of
two alternating steps: (i) a generation of short molecular
dynamics trajectories in the NVE ensemble, i.e. at a constant
number of particles N, a constant volume V and a constant
energy E, and (ii) a partial momentum update preceding
each molecular dynamics trajectory. The decision on accept-
ing / rejecting a proposal in steps (i) and (ii) is made using
the appropriate Metropolis function with the true Hamilto-
nian replaced by the shadow Hamiltonian, HΔt (r, p), acting
as a new modified reference energy. The shadow Hamilto-
nian is obtained from a truncated Taylor expansion of the
usual Lagrangian following the standard Lengendre trans-
form. In this paper we will use the fourth order shadow
Hamiltonian. The ways of calculating HΔt(r, p) are dis-
cussed in [14]. The objective of the GSHMC method is to
reduce a number of rejected trajectories through the use of
shadow Hamiltonians while retaining dynamical informa-
tion by only partially refreshing momenta.

The GSHMC algorithm can be summarized as follows:

– Given positions r and momenta p, evaluate HΔt (r, p).
– Obtain u from a Gaussian distribution

u = β−1/2M1/2ξ, (1)

where β = 1/kBT , kB is the Boltzmann constant, M is
the mass matrix and ξ is a noise vector generated from
a Gaussian distribution as ξ = (ξ1, . . . , ξ3N)T , ξi ∼
N (0, 1), i = 1, . . . , 3N .
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– Generate momenta p′ and a vector of auxiliary variables
u′ using the momentum update procedure:

(u′, p′) =
{

[R(φ)(u, p)T ]T with probability P(r, p, u, p′, u′),
(u, p) otherwise,

(2)

where

P(r, p, u, p′, u′) = min

{
1,

exp(−β[H�t (r, p′) + 1
2 (u′)T M−1u′])

exp(−β[H�t(r, p) + 1
2 uT M−1u])

}
,

(3)

and

R(φ) =
(

cos(φ) − sin(φ)

sin(φ) cos(φ)

)
, (4)

where φ is a parameter taking values 0 < φ ≤ π/2. A
prior evaluation of HΔt (r, p′) is required for calculating
P(r, p, u, p′, u′).

It is worth noting that u is totally discarded after each
step and it is replaced by a new set of random variables.

– Given (r, p′), integrate the Hamiltonian equations of the
system using the symplectic method Ψ�t over L steps
with step-size �t . ΨT (r, p′) = (rnew, pnew), T = LΔt .

– Evaluate HΔt (rnew, pnew).
– Accept the new configuration (rnew, pnew) with a

Metropolis test where the accepting probability is

min{1, exp(−β
[
HΔt (rnew, pnew) − HΔt(r, p′)

]
)}. (5)

– If accepted: choose (r, p) = (rnew, pnew) as a
new configuration.

– If not: take r and negate momenta, i.e. p =
−p′.

– Go to the first step.

As the simulation is performed in the modified ensemble
with respect to shadow Hamiltonian, reweighting has to be
applied to calculations of statistical averages [14]. Given an
observable 	(r, p) and its values 	i , i = 1, . . . , K , along
a sequence of states (ri , pi), i = 1, . . . , K , we reweight 	i

to compute averages 〈	〉 by applying the formula

〈	〉K =

K∑
i=1

wi	i

K∑
i=1

wi

with weight factors

wi = exp
(−β(H(ri , pi) − H�t(ri , pi ))

)
.

To extend this methodology to simulations in the NPT
ensemble, the following modifications are required. First,
the MD simulations have to be performed in the NPE
ensemble rather than in the NVE ensemble. If the barostat
chosen in the NPE simulations leads to the modification of
Hamiltonian, then the shadow Hamiltonians will be differ-
ent from those suggested for simulations in NVT ensembles
and have to be derived specifically for this case. The inte-
grator used for solving the associated modified equations
of motions should be also symplectic as in the original
GSHMC method. Below we briefly show how all those
problems were addressed in the new NPT-GSHMC method.
More details can be found in [14].

The Andersen barostat has been chosen for maintaining
constant pressure in MD simulations. The Andersen baro-
stat is based on the introduction of a new extended variable,
which physical meaning is the (dynamic) value of the vol-
ume of the simulation box. The extended variable is an
additional degree of freedom, it must be included in the
Lagrangian and new equations of motion are derived. It is
also used as a rescaling factor for the positions. Following
Andersen’s terminology we refer to the extended variable as
the piston.

More specifically, in the classical equations of motion

ṙ = − ∂H
∂r , ṗ = + ∂H

∂p (6)

the coordinate vector r ∈ R
3N is replaced by a scaled vector

d ∈ R
3N defined as

d = r/V1/3, (7)

where V is the volume of the simulation box.
As the volume V is allowed to change in order to keep

constant pressure, we introduce q as the dynamic value of
the volume.

The extended Lagrangian density then reads as

L(ḋ, q̇, d, q) =
{

1

2
q2/3ḋ · [Mḋ] − U(q1/3d) + μ

2
q̇2 − αq

}
, (8)

where α is the external pressure acting on the system, μ >

0 is the mass of the piston and U is the potential energy
function. The last two terms of Eq. 8 are in fact the kinetic
and potential energies associated with the piston.

The Hamiltonian H, obtained from Eq. 8, is given by

H = ḋ · ∇ḋL + q̇∇q̇L − L

= 1

2
pr · [M−1pr] + U(r) + 1

2μ
p2 + αq, (9)

where

pd = q2/3Mḋ, p = μq̇ (10)

are the conjugate momenta in the NPE formulation, whereas
pr = M ṙ = pd/q1/3 is the NVE momentum vector (6). The
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associated NPE equations of motion now can be obtained
using Eqs. 6 and 9.

A time-reversible and symplectic method for integrat-
ing the NPE equations of motions is suggested in [14] and
summarized below:

Given (dn, qn, pn
d, pn) and a step-size �t we get dn+1

and qn+1 from

pn
d = 1

2
[(qn+1)2/3+(qn)2/3]M

(
dn+1 − dn

�t

)
+�t

2
∇dU((qn)1/3dn)

(11)

pn = μ

(
qn+1 − qn

�t

)
− �t

6
(qn)−1/3

(
dn+1 − dn

�t

)
(12)

·
[
M

(
dn+1 − dn

�t

)]
+ �t

2
[∇qU((qn)1/3dn) + α].

Then, to complete one step, the values of pn+1
d and pn+1

are explicitly obtained from

pn+1
d = 1

2
[(qn+1)2/3 + (qn)2/3]M

(
dn+1 − dn

�t

)

− �t

2
∇dU((qn+1)1/3dn+1) (13)

pn+1 = μ

(
qn+1 − qn

�t

)
− �t

6
(qn)−1/3

(
dn+1 − dn

�t

)

·
[
M

(
dn+1 − dn

�t

)]
− �t

2
[∇qU((qn+1)1/3dn+1) + α]. (14)

Finally, the expression for the fourth order shadow
Hamiltonian associated with the real Hamiltonian H is
provided in [14] by

H[4]
�t = H

+�t2

24

{
2μQ̇Q(3) − μQ̈2 + 2Q2/3Ḋ · [MD(3)] − Q2/3D̈ · [MD̈]

}

+�t2

12

{(
4Q̈

3Q1/3
− 4Q̇2

9Q4/3

)
Ḋ · [MḊ] − 2

3Q1/3
Q̇Ḋ · [MD̈]

}
, (15)

where Q(t) and D(t) are the interpolation polynomials
along numerical trajectories {qn} and {dn}, respectively.

It should be noticed here that the introduction of the
Andersen barostat in GSHMC leads also to the modification
of the partial momentum update step, namely, updating the
piston momentum should be also included.

The complete algorithm for the NPT-GSHMC method
now can be summarized as follows:

– Given positions d and associated momenta pd evaluate
a shadow Hamiltonian (15).

– Draw the noise vector u from the Gaussian distribution
as in Eq. 1 and take u = β−1/2μ1/2ξ , ξ ∼ N (0, 1).

– Generate momenta p′
d and the vector u′ as in Eq. 2. For

the refreshment of the piston momentum p a similar
procedure is followed:

u′ = − sin(φ)p + cos(φ)u,

p′ = cos(φ)p + sin(φ)u.
(16)

The probability of acceptance (3) in this case is
slightly modified and replaced by

P(d,q,pd, p, u, u, p′
d, p′, u′, u′) (17)

= min

{
1,

exp(−β[H�t (d, q, p′
d, p′) + 1

2 (u′)T M−1u′ + 1
2μ

(u′)2])
exp(−β[H�t (d, q, pd, p) + 1

2 uT M−1u + 1
2μ

u2])

}
.

The shadow Hamiltonian corresponding to the newly
generated momenta has to be evaluated using Eq. 15 in
order to complete Metropolis test.

– The system is integrated following the new symplectic
method (11)–(14) for L steps with the step-size �t to
obtain (dnew, pdnew, qnew, pnew).

– The new shadow Hamiltonian (15) is evaluated at
the positions and momenta (dnew, pdnew, qnew, pnew)

obtained from the integration.
– Accept the new configuration (dnew, pdnew, qnew, pnew)

with probability

min{1, exp(−β[HΔt (dnew, pdnew, qnew, pnew) − HΔt (d, p′
d, q, p′)])}.

(18)

– If accepted: choose (d, pd, q, p) =
(dnew, pdnew, qnew, pnew) as a new
configuration.

– If not: take d and q , and negate momenta, i.e.
pd = −p′

d and p = −p′.

– Go to the first step.

A change of variable option aiming to increase a
momenta acceptance rate is implemented in this algorithm
as explained in [14].

At the end of simulation, re-weighting of expectation
values should be performed to recover the Boltzmann distri-
bution.

In the next subsection, the implementation of this algo-
rithm is explained in detail.

Implementation in GROMACS

The NPT-GSHMC method has been implemented in the
GROMACS software package [8, 9], the modified version
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4.5.4. This version has been chosen in order to comple-
ment from the implementation of the NVT-GSHMC [23]
and also for the straightforward comparison of the accuracy
and performance of both hybrid Monte Carlo methodolo-
gies. Extending the implementation of NVT/NPT-GSHMC
to the latest, GPU accelerated, version of GROMACS is
planned for the nearest future.

GROMACS is a popular MD software package available
under the GNU Lesser General Public License. It is written
in the C programming language, highly optimized for maxi-
mal computational efficiency and fully parallelized using
the MPI protocol. The package is mainly used for per-
forming molecular dynamics simulations. It supports most
important algorithms expected from a modern molecular
dynamics implementation, including popular barostats, such
as Berendsen, Parrinello-Rahman, and MTTK, and thermo-
stats, such as Berendsen, Nosé-Hoover and V-Rescale [24].

The generalized shadow hybrid Monte Carlo (GSHMC)
method [14], recently implemented in GROMACS [23] (we
shall call the resulting code here GROMACS-GSHMC),
provides a rigorous method for performing constant temper-
ature simulations and can be served as a thermostat itself. In
order to achieve constant temperature and constant pressure
simulation, one also needs to have the Andersen barostat
at hand as well as the implemented specific features of the
NPT-GHSMC method explained in the previous subsection.

The Andersen barostat is not available in the released ver-
sion of GROMACS though the MTTK, an Andersen-based
barostat [6], is already implemented there. This barostat
must be combined with a Nosé-Hoover thermostat [24] for
running simulations in the NPT ensemble and it does not
allow using a different thermostat, for example GSHMC.
Thus it cannot serve our purposes and it was necessary to
implement the original formulation of Andersen barostat in
GROMACS-GSHMC. In practice it means the implemen-
tation of a new symplectic and time-reversible integrator
(11)-(14). For simplicity and consistency, the new integra-
tor was introduced as a modification of the existing velocity
Verlet algorithm.

Other modifications included:

– Evaluation of an NPT shadow Hamiltonian (15).
– Adding a new momentum update procedure (16), spe-

cific to the NPT-GSHMC algorithm.
– Adding new options to the .mdp configuration file.

Symplectic integrator: The symplectic time-reversible inte-
grator has been extended to the case of the Andersen
equations of motion. The updating scheme is the following
(for further details the reader can consult [25]).

We begin with performing a half step for the velocities:

– ṙn+1/2 = ṙn+�t
2

1
M

f n, with the force f n corresponding
to the velocity ṙn,

– ḋn+1/2 = ṙn+1/2

(qn)1/3 ,

– q̇n+1/2 = q̇n + �t
2

1
μ (P − α), with the pressure P eval-

uated taking the old positions rn, the old volume qn but
the already updated velocities ṙn+1/2.

Then perform a full step for the positions:

– qn+1/2 = qn + �t
2 q̇n+1/2,

– rn+1 = rn + �t
(qn)2/3

(qn+1/2)2/3 ṙn+1/2,

– dn+1 = dn + �tḋ
n+1/2

,
– qn+1 = qn+1/2 + �t

2 q̇n+1/2.

Now two rescaling steps follow:

– ṙn+1/2 = ṙn+1/2 (qn)1/3

(qn+1)1/3 ,

– rn+1 = rn+1 (qn+1)1/3

(qn)1/3 .

And finally we complete the full step for the velocities:

– q̇n+1 = q̇n+1/2 + �t
2

1
μ

(P − α), with the pressure

P evaluated taking the new positions rn+1, the new
volume qn+1 but the half-step velocities ṙn+1/2,

– ṙn+1 = ṙn+1/2 + �t
2

1
M

f n+1, with the force f n+1

evaluated in the previous velocity ṙn+1/2,

– ḋ
n+1 = ṙn+1

(qn+1)1/3 .

Since in the updating scheme above the dynamic value of
volume q is changing, one has to make sure that the simula-
tion box is also changing to fit to this volume. In the code it
is done by re-scaling the box dimensions with the new value
of the dynamic volume in the function update box(). This
implementation only applies to the case of a simulation box
changing isotropically.

It is important to mention that in order to make the inte-
gration scheme (11)-(14) working, the values of pressure
and forces have to be updated every time step. This is done
in the original version of the GROMACS code. However,
the frequency of the pressure updates has to be specified by
a user in the GROMACS parameter file. For using the NPT-
GSHMC within the GROMACS code, such a parameter
should be always set to 1. Such a choice does not introduce
an important computational overhead as can be seen from
the numerical tests in the following section.

It is also noteworthy that GROMACS works with veloci-
ties instead of momenta. That is why the theoretical formu-
lation (10) is slightly modified in the above scheme taking
into account the relation between velocities and momenta.

The current version of the GROMACS software offers
the velocity Verlet integrator. The new integrator (11)-
(14) is placed in the same part of the code. The both
GROMACS routines for updating positions and velocities
need to be modified in the function update coords(), but the
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modifications are straightforward, mainly related to a
change of parameters of the subroutines.

There is also another important issue to consider: in
GROMACS, when dealing with pressures, a rescaling fac-
tor is used. It has to be included in the time integration of
equations of motion for the volume q , and in the calculation
of the additional energy terms.

Shadow Hamiltonian: In order to introduce the NPT
Shadow Hamiltonians (15) in the GROMACS-GSHMC
code, the shadow Hamiltonian implemented in [23] can be
taken as a starting point. As GSHMC (even HMC) meth-
ods are not a part of the released GROMACS version, the
shadow Hamiltonian appears in a new piece of the code
in the subroutine shadow() which is called from the func-
tion do md() in its main time-step loop. As stated in section
“Formulation”, in the NPT ensemble one has to consider
a different shadow Hamiltonian (15) where the extended
variable (the piston volume) introduces new terms. How-
ever, this modification does not entail a great complexity
since the NPT shadow Hamiltonians are calculated in a sim-
ilar way as the NVT shadow Hamiltonians. Both types of
shadow Hamiltonians are currently available in the code and
can be chosen at runtime according to the parameters of the
simulation.

Momentum refreshment: In comparison with GROMACS-
GSHMC, the momentum refreshment procedure for the
NPT-GSHMC requires also the update of the momentum
p for the piston. This is a relatively simple extension of
the previous implementation. The algorithmic details can be
found in section “Formulation”.

Parameter file: GROMACS needs to receive two new
parameters through the .mdp parameter file, the piston mass
μ and the reference pressure α. Additionally, the Andersen
barostat has to be recognized as a pressure coupling
method. These modifications were done in the standard way
described in the GROMACS Developer’s Guide [24]. The
specific parameters in the .mdp file look like this:

More details on GSHMC input parameters can be found
in [23].

Results

We test the new NPT-GSHMC method by comparing it with
the NVT-GSHMC implementation [23] and NPT-MD which
uses the velocity rescale thermostat [22], the Parrinello-
Rahman barostat [2] and the position leapfrog integrator (as
required by the chosen barostat). The same code with the
appropriate choice of parameters for each case is used for
running all three simulations.

As testing systems, we choose a coarse-grained model of
the VSTx1 toxin in a POPC bilayer [26] and an atomistic
model of the protein villin [27]. From here on these sys-
tems are denoted as toxin and villin. In the coarse-grained
system, four heavy particles on average are represented as
one sphere [28, 29], which produces a total number of 7810
particles. The integrator step-size is set to 20 fs for optimal
accuracy and 30 fs for optimal sampling. For both Coulomb
and Van der Waals interactions the shift algorithm is used.
Both potential long range energies are shifted to 0 kJmol−1

at a radius of 1.2 nm and the forces are updated from those
potentials. Periodic boundary conditions are considered in
all directions. No specific constraints are taken into account
but the ones defined in the topology files. For the NPT-
GSHMC particular case we use the .mdp parameters shown
above. The villin protein is composed of 389 atoms and the
system is solvated with 3000 water molecules. The integra-
tor step-size for this system is set to the standard 1 fs in all
cases. Coulomb and Van der Waals interactions and peri-
odic boundary conditions are considered as in the previous
system. However, for villin, the bonds with H-atoms are
converted to constraints and the constraint algorithm used is
LINCS. The specific NPT-GSHMC parameters are the same
as taken for the coarse-grained system but with the angle φ

equal to 0.4 and the reference temperature equal to 300 K.

Accuracy

In order to test the accuracy of the new method, we cal-
culate averages for several thermodynamic observables in
similar simulations with the three methods. As it was dis-
cussed in the previous section, the simulations involving
the GSHMC method need to re-weight statistical aver-
ages to compensate for the disturbance introduced by
the use of shadow Hamiltonians [14]. In the case of
the toxin system, 30 ns simulations were performed with
an integrator step size of 20 fs, with the target tem-
perature of 310 K and the target pressure of α=1 bar.
It should be noted that the efficiency and precision of
all three methods can vary according to several tuning



J Mol Model (2014) 20:2487 Page 7 of 10, 2487

Table 1 Toxin-bilayer system
statistical averages Averages Acc. Rates

Simulation d (nm) T (K) P (bar) Upb (kJ mol−1) Ar (%) Ap (%)

NPT-GSHMC 2.3±0.4 308.5±0.3 1.2±0.5 −16.3±2.0 97 83

NVT-GSHMC 2.4±0.3 308.4±0.1 − −14.9±0.6 100 85

NPT-MD 2.4±0.4 309.9±0.1 0.6±0.4 −15.8±0.2 − −

Table 2 Villin protein system
statistical averages Averages Acc. Rates

Simulation T (K) P (bar) Udih (kJ mol−1) Ar (%) Ap (%)

NPT-GSHMC 299.5±0.7 1.4±0.9 276±1 95 94

NVT-GSHMC 299.9±0.9 − 276±3 100 97

NPT-MD 299.9±0.7 1.7±0.4 282±1 − −

Fig. 1 Total energy oscillations in the villin system using NPT-
GSHMC with varying piston masses μ

parameters. In Table 1 typical results for all methods are
shown with a set of parameters chosen for optimizing the
accuracy of results.

We choose to monitor four properties of the toxin sys-
tem, (i) the distance traveled by the toxin from the centre
of the membrane to the preferable location at the surface
of the membrane d, (ii) the temperature T, (iii) the pressure
P and (iv) the Coulomb energy between the protein and
the bilayer Upb. For the GSHMC methods, the re-weighted
averages are given. All calculated properties are in a good
agreement.
Error estimates correspond to the standard deviation as
provided by GROMACS [8, 9].

The Coulomb potential energy between the protein
and the bilayer has been measured before for similar
coarse-grained simulations [20], with resulting values close
to -16 kJ/mol, which is consistent with our results (see

Fig. 2 Comparison for the time evolution of the distance traveled by the toxin towards the membrane bilayer with the three different methods
(left) and the autocorrelation function for said distance (right)
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Table 3 Integrated autocorrelation for toxin-bilayer distance

NPT-GSHMC NVT-GSHMC NPT-MD

IACF 1.9 4.7 21.4

Table 1). The Andersen barostat shows slightly more accu-
rate pressure than the Parrinello-Rahman in our tests. These
particular systems exhibit pressure oscillations of consider-
able amplitude, so we consider that the reported values for
both barostats are sufficiently accurate. The NVT-GSHMC
has no pressure coupling so the measured average is disre-
garded.

Table 2 shows the test results for the villin system. Sim-
ulations were run for 1 ns with a step size of 1 fs, the target
temperature of 300 K and the reference pressure of 1 bar.
The observed average temperatures, T , and dihedral poten-
tial energies, Udih, agree well for all simulation methods.
Similar average values of pressure are achieved with both
NPT simulations, NPT-MD and NPT-GSHMC.

Sampling

The GSHMC method and the Andersen barostat have sev-
eral tuning parameters that can affect their performance.
The two most important parameters in the case of GSHMC
are the length of the MD trajectories and the angle in the
momentum update procedure, φ. When the length of trajec-
tories is too long, the gain over MD in terms of sampling
efficiency is less noticeable. But if the length is too short,
then the computational time spent on frequent calculations
of shadow Hamiltonians becomes too expensive.

The value of φ must be between 0 and π/2. If it is too
small then the temperature coupling might be too weak, but
larger values interfere with the dynamics and can yield very
low acceptance rates. The optimal values for the length of
trajectories and φ are usually found through trial and error.
However the reasonable default ranges for both parameters
are not difficult to define and in the case of biomolecular
simulation, they are 500-1500 integraton steps and 0.1-0.4
radians respectively.

Other parameters such as a step-size used in the integra-
tor, the order of shadow Hamiltonians or the type of momen-
tum flip upon rejection are discussed elsewhere [23, 30].

Table 4 Comparison of computational times for all methods

Toxin Villin

Simulation Time (s) ns/day Time (s) ns/day

NPT-GSHMC 5766 749 11222 7.69

NVT-GSHMC 5747 751 11550 7.48

NPT-MD 5645 765 11087 7.79

The Andersen barostat introduces two additional param-
eters: the mass of the piston μ and the reference or
target pressure α. The reference pressure is used in the
integrator for updating the piston velocity (see section
“Implementation in GROMACS”), as well as in the addi-
tional potential energy term in the Hamiltonian (9). When
simulating biological experiments this pressure is com-
monly set to 1 bar.

μ represents the inertial mass of the extended coordinate
and has a strong influence on the performance of the baro-
stat. Figure 1 shows the effect of μ on the amplitude and
frequency of the total energy of the villin system. Small pis-
ton masses can lead to wild oscillations in volume that could
not only cause stability problems but also keep simulation
from reaching its target pressure. But if the piston mass
is too big then the volume of the box barely changes and
an NVT simulation is recovered with a pressure that very
slowly tends to α. For a complete discussion on an optimal
choice of μ see [1] and [25].

One of the most important advantages of using GSHMC
instead of standard MD is the noticeable improvement in
sampling efficiency [14, 20, 23]. To test the efficiency gain
of the new NPT-GSHMC method, the distance traveled by
the toxin towards the POPC bilayer in the coarse-grained
system was measured. In Fig. 2 the time evolution of this
distance and the corresponding autocorrelation functions are
shown for the three methods. In general, GSHMC methods
are expected to decorrelate faster and hence sample better.
In this case both NVT and NPT-GSHMC arrive together
at the ∼2.4 nm distance (the position of the bilayer) in
approximately half the time required by NPT-MD. This
performance is consistent with our previous work [20].

A better way to measure the sampling efficiency is to
calculate the integrated autocorrelated function IACF for
distance d during the equilibration phase of the simulation

Fig. 3 Ramachandran plots for
the Met13 dihedral in villin.
Left: NPT-MD; Middle:
NPT-GSHMC; Right:
NVT-GSHMC
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(see for example [17]). Lower values of IACF indicate lower
correlations and hence better sampling. The values obtained
for this case are shown in Table 3, which correspond to the
IACF for the first 5000 ps of simulation. In this particu-
lar case the integrator step-size was set to 30 fs for optimal
sampling efficiency. It is clear that both GSHMC methods
outperform MD.

Another way to further test the sampling efficiency of
the new method is to plot Ramachandran histograms [31]
for the amino acid residues in the villin system. These his-
tograms show how the φ − ψ phase space of a particular
residue is explored during the simulation. As a represen-
tative example, Fig. 3 compares the resulting plots for the
Met13 residue extracted from a 1 ns simulations using
the all three simulation techniques. One can immediately
see that both GSHMC methods are exploring a larger por-
tion of the configurational space compared with MD. Most
other residues show a similar improvement in sampling
efficiency and several examples have been included in the
Supplementary Material.

As a final comparison, it is necessary to weight the
computational expense introduced by the Andersen baro-
stat. A way to do so is by comparing the computational
times necessary to complete a 30 ns simulation of the
toxin system and a 1 ns simulation of the villin system
using an 8 processor node. The results in this case confirm
what was measured previously for our GSHMC imple-
mentation [23]. The NVT-GSHMC method introduces on
average an additional 2-4 % computational overhead com-
pared to the NPT-MD simulation. The NPT-GSHMC takes
approximately the same computational time, which comes
to show that our Andersen barostat implementation intro-
duces almost no overhead and is fully compatible with
the MPI parallelization in GROMACS. See Table 4 for a
comparison of computational times.

Conclusions

The GSHMC method has been adapted to the NPT ensem-
ble using an Andersen barostat and implemented in the open
source software GROMACS. The implementation has been
tested against the NPT-MD and NVT-GSHMC simulation
methods available in the GROMACS-GSHMC suite [23].
NPT-GSHMC shows the same level of accuracy as demon-
strated by NPT-MD and NVT-GSHMC in calculation of the
thermodynamic properties of the tested systems, such as the
toxin in a POPC bilayer and the protein villin at constant
pressure and temperature.

The NPT-GSHMC method has been also proven to
achieve a comparable sampling efficiency to NVT-GSHMC,
as was expected from the theoretical formulation. The
introduction of a barostat does not limit the benefits

over MD that were previously obtained by the use of
GSHMC.

The method does not introduce any noticeable computa-
tional load and is fully compatible with the highly optimized
parallelization for multiple processors and threads already
available in GROMACS.

In summary, all advantages offered by the generalized
shadow hybrid Monte Carlo methods, such as rigorous tem-
perature control, sampling efficiency, are now available in
GROMACS for simulation of real life experiments at con-
stant pressure and constant temperature without a loss of
computational efficiency.
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